Apparent enrichment of organically bound tritium in rivers explained by the heritage of our past

J Environ Radioact. 2014 Oct:136:162-8. doi: 10.1016/j.jenvrad.2014.05.019. Epub 2014 Jun 21.

Abstract

The global inventory of naturally produced tritium (3H) is estimated at 2.65 kg, whereas more than 600 kg have been released during atmospheric nuclear tests (NCRP, 1979; UNSCEAR, 2000) constituting the main source of artificial tritium throughout the Anthropocene. The behaviour of this radioactive isotope in the environment has been widely studied since the 1950s, both through laboratory experiments and, more recently, through field observations (e.g., Cline, 1953; Kirchmann et al., 1979; Daillant et al., 2004; McCubbin et al., 2001; Kim et al., 2012). In its "free" forms, [i.e. 3H gas or 3H hydride (HT); methyl 3H gas (CH3T); tritiated H2O or 3H-oxide (HTO); and Tissue Free Water 3H (TFWT)], tritium closely follows the water cycle. However, 3H bound with organic compounds, mainly during the basic stages of photosynthesis or through weak hydrogen links, is less exchangeable with water, which explains its persistence in the carbon cycle as re underlined recently by Baglan et al. (2013), Jean-Batiste and Fourré (2013), Kim et al. (2013a,b). In this paper, we demonstrate that terrestrial biomass pools, historically contaminated by global atmospheric fallout from nuclear testing, have constituted a significant delayed source of organically bound tritium (OBT) for aquatic systems, resulting in an apparent enrichment of OBT as compared to HTO. This finding helps to explain concentration factors (tritium concentration in biota/concentration in water) greater than 1 observed in areas that are not directly affected by industrial radioactive wastes, and thus sheds light on the controversies regarding tritium 'bioaccumulation'. Such apparent enrichment of OBT is expected to be more pronounced in the Northern Hemisphere where fallout was most significant, depending on the nature and biodegradability of terrestrial biomass at the regional scale. We further believe that OBT transfers from the continent to oceans have been sufficient to affect tritium concentrations in coastal marine biota (i.e., near river inputs). Our findings demonstrate that the persistence of terrestrial organic (3)H explains imbalances between organically bound tritium and free (3)H in most river systems in particular those not impacted by releases from nuclear facilities.

Keywords: Biomass; Freshwaters; Global fallout; Rivers; Sediments; Tritium.

MeSH terms

  • Ecosystem
  • France
  • Models, Theoretical
  • Radiation Monitoring*
  • Radioactive Fallout*
  • Rivers / chemistry*
  • Tritium / analysis*
  • Water Pollutants, Radioactive / analysis*

Substances

  • Radioactive Fallout
  • Water Pollutants, Radioactive
  • Tritium