Formation of hexagonal fullerene layers from neutral and negatively charged fullerenes in {(Ph3P)3Au(+)}2(C60(•-))2(C60)·C6H4Cl2 containing gold cations with the C3v symmetry

Inorg Chem. 2014 Jul 7;53(13):6850-5. doi: 10.1021/ic500689n. Epub 2014 Jun 19.

Abstract

Fullerene salt {(Ph3P)3Au(+)}2(C60(•-))2(C60)·C6H4Cl2 (1) containing (Ph3P)3Au(+) cations with the C3v symmetry has been obtained as single crystals. Hexagonal corrugated fullerene layers formed in 1 alternate with the layers consisting of (Ph3P)3Au(+) and C6H4Cl2 along the c axis. According to IR spectra and peculiarities of the crystal structure, the charge on fullerenes in the layers is evaluated to be -1 for two and close to zero for one C60. These fullerenes have different cationic surroundings, and positively charged gold atoms approach closer to C60(•-). Charged and neutral fullerenes are closely packed within hexagonal layers with an interfullerene center-to-center distance of 10.02 Å and multiple short van der Waals C···C contacts. The distances between C60(•-) are essentially longer with an interfullerene center-to-center distance of 10.37 Å due to corrugation of the layers, and no van der Waals contacts are formed in this case. As a result, each C60(•-) has only three negatively charged fullerene neighbors with rather long interfullerene distances providing only weak antiferromagnetic interaction of spins in the fullerene layers with a Weiss temperature of -5 K.