The zeta potential of mineral fibres

J Hazard Mater. 2014 Jul 15:276:469-79. doi: 10.1016/j.jhazmat.2014.05.060. Epub 2014 May 29.

Abstract

For the first time, the zeta (ξ) potential of pathogenic mineral fibres (chrysotiles, amphiboles and erionite) was systematically investigated to shed light on the relationship between surface reactivity and fibre pathogenicity. A general model explaining the zeta potential of chrysotile, amphiboles and erionite has been postulated. In double distilled water, chrysotiles showed positive values while crocidolite and erionite showed negative values. In contact with organic solutions, all fibres exhibited negative values of zeta potential. The decrease of the surface potential is deemed to be a defensive chemical response of the macrophage cells to minimize hemolytic damage. Negatively charged surfaces favour the binding of collagen and redox activated Fe-rich proteins, to form the so-called asbestos bodies and prompt the formation of HO via the reaction with peroxide (H2O2+e(-)→HO+HO(-)). An additional mechanism accounting for higher carcinogenicity is possibly related to the Ca(2+) sequestration by the fibres with surface negative potential, impairing the mitochondrial apoptotic pathway. It was also found that with a negative zeta potential, the attractive forces prevailed over repulsions and favoured processes such as agglomeration responsible of a tumorigenic chronic inflammation.

Keywords: Asbestos; BET; Mineral fibres; Pathogenicity; Zeta potential.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Magnesium Silicates / chemistry*
  • Microscopy, Electron, Scanning

Substances

  • Magnesium Silicates