Photothermal optical coherence tomography based on the localized surface plasmon resonance of Au nanoring

Opt Express. 2014 May 19;22(10):11754-69. doi: 10.1364/OE.22.011754.

Abstract

The conventional optical coherence tomography (OCT) images based on enhanced scattering and the photothermal (PT) images based on enhanced absorption of the localized surface plasmon (LSP) resonance of Au nanorings (NRIs) in a bio-tissue sample are demonstrated with the scans of an OCT system (1310-nm system), in which the spectral range covers the LSP resonance peak wavelength, and another OCT system (1060-nm system), in which the spectral range is away from the LSP resonance peak wavelength. A PT image is formed by evaluating the modulation frequency (400 Hz) response of an excitation laser with its wavelength (1308 nm) close to the LSP resonance peak at 1305 nm of the Au NRI solution. With the scan of the 1310-nm OCT system, the Au NRI distribution in the bio-tissue sample can be observed in both conventional OCT and PT images. However, with the scan of the 1060-nm OCT system, the Au NRI distribution can be clearly observed only in the PT image. The diffusion process of Au NRIs in the bio-tissue sample can be traced with the scan of either OCT system. Based on phantom experiments, it is shown that the PT image can help in resolving the ambiguity of a conventional OCT image between the enhanced scattering of Au NRIs and the strong scattering of a tissue structure in the 1310-nm OCT scanning. Also, under the condition of weak intrinsic sample scattering, particularly in the scan of the 1060-nm system, the PT signal can be lower than a saturating level, which is determined by the excitation power. By increasing OCT system signal-to-noise ratio or M-mode scan time, the PT signal level can be enhanced.

Publication types

  • Research Support, Non-U.S. Gov't