Raman scattering of linear chains of strongly coupled Ag nanoparticles on SWCNTs

Sci Rep. 2014 Jun 10:4:5238. doi: 10.1038/srep05238.

Abstract

We compare the Raman scattering properties of hybrid nanostructures consisting of Ag nanoparticles (NPs) in disordered and aligned arrangements on single-walled carbon nanotubes (SWCNTs) as a result of chemical and photoreduction methods. In the latter case, the unique structure of the very small Ag NP (from 4 to 7 nm) chains generated an extremely large mode at 969 cm(-1) that was assigned to the sulphate-silver interaction at the NP surface. Another strong mode was present at 1201 cm(-1) and was assigned to an IR-active mode of sodium dodecyl sulphate (SDS); this mode was observed because the symmetry changes altered the selection rules. We demonstrate that both the UV photoreduction of silver and the presence of SWCNTs are necessary to produce this very strong Raman scattering. The Raman modes of the SWCNTs are also significantly modified by the presence of Ag NP chains along the nanotubes.