Control of catalytic efficiency by a coevolving network of catalytic and noncatalytic residues

Proc Natl Acad Sci U S A. 2014 Jun 10;111(23):E2376-83. doi: 10.1073/pnas.1322352111. Epub 2014 May 27.

Abstract

The active sites of enzymes consist of residues necessary for catalysis and structurally important noncatalytic residues that together maintain the architecture and function of the active site. Examples of evolutionary interactions between catalytic and noncatalytic residues have been difficult to define and experimentally validate due to a general intolerance of these residues to substitution. Here, using computational methods to predict coevolving residues, we identify a network of positions consisting of two catalytic metal-binding residues and two adjacent noncatalytic residues in LAGLIDADG homing endonucleases (LHEs). Distinct combinations of the four residues in the network map to distinct LHE subfamilies, with a striking distribution of the metal-binding Asp (D) and Glu (E) residues. Mutation of these four positions in three LHEs--I-LtrI, I-OnuI, and I-HjeMI--indicate that the combinations of residues tolerated are specific to each enzyme. Kinetic analyses under single-turnover conditions revealed that I-LtrI activity could be modulated over an ∼100-fold range by mutation of residues in the coevolving network. I-LtrI catalytic site variants with low activity could be rescued by compensatory mutations at adjacent noncatalytic sites that restore an optimal coevolving network and vice versa. Our results demonstrate that LHE activity is constrained by an evolutionary barrier of residues with strong context-dependent effects. Creation of optimal coevolving active-site networks is therefore an important consideration in engineering of LHEs and other enzymes.

Keywords: amino acid coevolution; genetic selection.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Aspartic Acid / chemistry
  • Aspartic Acid / genetics
  • Aspartic Acid / metabolism
  • Binding Sites / genetics
  • Biocatalysis
  • Catalytic Domain / genetics*
  • Endonucleases / chemistry
  • Endonucleases / genetics*
  • Endonucleases / metabolism
  • Evolution, Molecular*
  • Glutamic Acid / chemistry
  • Glutamic Acid / genetics
  • Glutamic Acid / metabolism
  • Models, Genetic
  • Models, Molecular
  • Mutation*
  • Phylogeny
  • Protein Structure, Tertiary

Substances

  • Aspartic Acid
  • Glutamic Acid
  • Endonucleases