Densities, Excess Molar Volumes, and Thermal Expansion Coefficients of Aqueous Aminoethylethanolamine Solutions at Temperatures from 283.15 to 343.15 K

J Solution Chem. 2014;43(5):959-971. doi: 10.1007/s10953-014-0175-2. Epub 2014 May 14.

Abstract

The densities of aqueous mixtures of aminoethylethanolamine (CAS #000111-41-1) were measured over the entire compositional range at temperatures of 283.15-343.15 K. The results of these measurements were used to calculate excess molar volumes and isobaric thermal expansion coefficients, and partial molar and apparent molar volumes and excess isobaric thermal expansion coefficients were subsequently derived. The excess molar volumes were correlated as a function of the mole fraction using the Redlich-Kister equation. Temperature dependences of the Redlich-Kister coefficients are also presented. The partial molar volumes at infinite dilution of AEEA in water were determined using two different methods. In addition, the solution density was correlated using a Joubian-Acree model. Aqueous solutions of AEEA exhibit similar properties to the aqueous solutions of other alkanolamines (like monoethanolamine) used in acid gas sweetening.

Keywords: AEEA; Aminoethylethanolamine; Density; Excess properties; Thermal expansion coefficient.