Tunable morphology synthesis of LiFePO4 nanoparticles as cathode materials for lithium ion batteries

ACS Appl Mater Interfaces. 2014 Jun 25;6(12):9236-44. doi: 10.1021/am501373h. Epub 2014 Jun 3.

Abstract

Olivine LiFePO4 with nanoplate, rectangular prism nanorod and hexagonal prism nanorod morphologies with a short b-axis were successfully synthesized by a solvothermal in glycerol and water system. The influences of solvent composition on the morphological transformation and electrochemical performances of olivine LiFePO4 are systematically investigated by X-ray diffraction, scanning electron microscopy, transmission electron microscopy and galvanostatic charge-discharge tests. It is found that with increasing water content in solvent, the LiFePO4 nanoplates gradually transform into hexagonal prism nanorods that are similar to the thermodynamic equilibrium shape of the LiFePO4 crystal. This indicates that water plays an important role in the morphology transformation of the olivine LiFePO4. The electrochemical performances vary significantly with the particle morphology. The LiFePO4 rectangular prism nanorods (formed in a glycerol-to-water ratio of 1:1) exhibit superior electrochemical properties compared with the other morphological particles because of their moderate size and shorter Li(+) ion diffusion length along the [010] direction. The initial discharge capacity of the LiFePO4@C with a rectangular prism nanorod morphology reaches to 163.8 mAh g(-1) at 0.2 C and over 75 mAh g(-1) at the high discharging rate of 20 C, maintaining good stability at each discharging rate.

Publication types

  • Research Support, Non-U.S. Gov't