Bronchial epithelial cells are rendered insensitive to glucocorticoid transactivation by transforming growth factor-β1

Respir Res. 2014 May 1;15(1):55. doi: 10.1186/1465-9921-15-55.

Abstract

Background: We have previously shown that transforming growth factor-beta (TGF-beta) impairs glucocorticoid (GC) function in pulmonary epithelial cell-lines. However, the signalling cascade leading to this impairment is unknown. In the present study, we provide the first evidence that TGF-beta impairs GC action in differentiated primary air-liquid interface (ALI) human bronchial epithelial cells (HBECs). Using the BEAS-2B bronchial epithelial cell line, we also present a systematic examination of the known pathways activated by TGF-beta, in order to ascertain the molecular mechanism through which TGF-beta impairs epithelial GC action.

Methods: GC transactivation was measured using a Glucocorticoid Response Element (GRE)-Secreted embryonic alkaline phosphatase (SEAP) reporter and measuring GC-inducible gene expression by qRT-PCR. GC transrepression was measured by examining GC regulation of pro-inflammatory mediators. TGF-beta signalling pathways were investigated using siRNA and small molecule kinase inhibitors. GRα level, phosphorylation and sub-cellular localisation were determined by western blotting, immunocytochemistry and localisation of GRα-Yellow Fluorescent Protein (YFP). Data are presented as the mean ± SEM for n independent experiments in cell lines, or for experiments on primary HBEC cells from n individual donors. All data were statistically analysed using GraphPad Prism 5.0 (Graphpad, San Diego, CA). In most cases, two-way analyses of variance (ANOVA) with Bonferroni post-hoc tests were used to analyse the data. In all cases, P <0.05 was considered to be statistically significant.

Results: TGF-beta impaired Glucocorticoid Response Element (GRE) activation and the GC induction of several anti-inflammatory genes, but did not broadly impair the regulation of pro-inflammatory gene expression in A549 and BEAS-2B cell lines. TGF-beta-impairment of GC transactivation was also observed in differentiated primary HBECs. The TGF-beta receptor (ALK5) inhibitor SB431541 fully prevented the GC transactivation impairment in the BEAS-2B cell line. However, neither inhibitors of the known downstream non-canonical signalling pathways, nor knocking down Smad4 by siRNA prevented the TGF-beta impairment of GC activity.

Conclusions: Our results indicate that TGF-beta profoundly impairs GC transactivation in bronchial epithelial cells through activating ALK5, but not through known non-canonical pathways, nor through Smad4-dependent signalling, suggesting that TGF-beta may impair GC action through a novel non-canonical signalling mechanism.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Bronchi / cytology
  • Bronchi / drug effects
  • Bronchi / metabolism
  • Cell Line, Tumor
  • Glucocorticoids / antagonists & inhibitors
  • Glucocorticoids / biosynthesis
  • Glucocorticoids / metabolism*
  • Humans
  • Respiratory Mucosa / cytology*
  • Respiratory Mucosa / drug effects
  • Respiratory Mucosa / metabolism*
  • Signal Transduction / physiology
  • Transcriptional Activation / drug effects
  • Transcriptional Activation / physiology*
  • Transforming Growth Factor beta / physiology*

Substances

  • Glucocorticoids
  • Transforming Growth Factor beta