Quasiclassical trajectory study of the C(¹D) + H₂ → CH + H reaction on a new global ab initio potential energy surface

J Phys Chem A. 2014 Jun 19;118(24):4235-42. doi: 10.1021/jp504411j. Epub 2014 Jun 10.

Abstract

Quasiclassical trajectory (QCT) calculations have been performed on a new global ab initio potential energy surface (PES) for the singlet ground state (1(1)A') of the CH2 reactive system. Our new PES can give a very good description of the well and asymptote regions, and particularly regions around conical intersections (CIs) and of van der Waals (vdW) interactions. The integral cross sections, differential cross sections, and product rovibrational state distributions for the C((1)D) + H2 → CH + H reaction have been investigated in a wide range of collision energies. The present integral cross sections are much larger than the previous QCT results at low collision energies, which can be attributed to the differences of the PESs in the regions around the CIs and vdW complexes. The thermal rate coefficients in the temperature range 200-1500 K have also been calculated and very good agreement with experiment is obtained.