Cosmeceutical effect on skin surface profiles and epidermis in UV-B-irradiated mice

JAMA Facial Plast Surg. 2014 Jul-Aug;16(4):253-60. doi: 10.1001/jamafacial.2013.2582.

Abstract

Importance: These data may be useful for developing guidelines for clinicians and the general population related to the reversal of photoaging effects on the aging face damaged by solar radiation.

Objective: To investigate antiaging effects of 4 commercially available topical agents on the dorsal skin in photoaged hairless mice.

Design and setting: Animal study at an academic medical center. Animals comprised 56 female Skh-1 hairless mice (6-8 weeks old). Skin samples were collected from nonirradiated intact mice (control), mice irradiated with UV-B for 8 weeks, mice irradiated with UV-B and then exposed to a topical cosmeceutical applied for 5 weeks, and UV-B-irradiated mice not exposed to cosmeceuticals and retained for 5 weeks until the end of the experiment.

Intervention: The mice were exposed to UV-B light 3 times a week for 2 months, followed by topical application of a peptide, antioxidant, estrogen, and retinoic acid agent for 5 weeks.

Main outcomes and measures: Surface features such as wrinkling were analyzed from replicas along with histomorphometric determination of epidermal thickness, sebocyte counts, and immunohistochemical study of proliferating cell nuclear antigen (PCNA).

Results: Exposure to UV-B induced significant wrinkle formation after 13 weeks, which was attenuated with treatments with a peptide cream, antioxidant mixture, and estrogen cream (mean [SD] Rz values: control [C], 60.7 [19.0]; irradiated [RAD], 51.8 [15.9] [P < .001]; irradiated-long [RAD-long], 86.0 [28.3] [P = .01]; antioxidant [AO], 45.2 [13.2]; peptide, 63.4 [18.8], estrogen, 64.6 [21.2]; retinoic acid [RA], 73.9 [28.5]; RAD-long vs C [P = .01], vs RAD [P < .001], vs estrogen [P = .04], vs peptide [P = .02], vs AO [P<.001], vs RA [P = .25]. There was a trend of reversal of irradiation-induced augmentation of epidermal thickness in animals treated with the peptide and AO (mean [SD] epidermal width: C, 21.0 [2.2] μm; RAD, 41.3 [7.0] μm [P < .001]; RAD-long, 39.1 [11.0] μm [P = .006]; AO, 37.3 [14] μm [P < .001]; peptide, 33.9 [3.8] μm [P = .01]; estrogen, 59.2 [9.2] μm [P = .003]; RA, 52.4 [8.7] μm [P < .001]). Retinoic acid augmented epidermal width and sebocyte counts (mean [SD] sebocyte data [number per gland]: C, 9.4 [2.0]; RAD, 11.69 [1.5] [P < .001]; RAD-long, 6.5 [1.3] [P = .73]; peptide, 7.2 [1.7] [P = .03]; estrogen, 4.1 [0.9] [P < .001]; AO, 7.2 [1.7] [P = .06]; RA, 11.0 [1.4] [P = .01]). Estrogen cream was effective in restoring surface features but enhanced thickness of epidermis in irradiated specimens. All groups had a higher PCNA index score except for peptide treatment, which brought it down to the control level (mean [SD] PCNA index values: C, 17.3 [1.5]; RAD, 32.4 [6.8] [P < .001]; RAD-long, 34.0 [6.1] [P < .001]; AO, 62.1 [3.5] [P = .01]; peptide, 20.1 [6.3] [P < .001]; estrogen, 56.8 [10.0] [P < .001]; RA, 35.2 [10.2] [P < .001]).

Conclusions and relevance: Of the 4 cosmeceuticals tested within this experimental period, peptide cream and antioxidant mixture were the most effective overall in reversing photoaging effects; retinoic acid was the least effective of these topical agents.

Level of evidence: NA.

Publication types

  • Evaluation Study
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Dermatologic Agents / pharmacology*
  • Epidermis / drug effects*
  • Epidermis / radiation effects*
  • Female
  • Mice
  • Mice, Hairless
  • Skin Aging / drug effects*
  • Skin Aging / radiation effects*
  • Ultraviolet Rays*

Substances

  • Dermatologic Agents