Neuronal spike initiation modulated by extracellular electric fields

PLoS One. 2014 May 29;9(5):e97481. doi: 10.1371/journal.pone.0097481. eCollection 2014.

Abstract

Based on a reduced two-compartment model, the dynamical and biophysical mechanism underlying the spike initiation of the neuron to extracellular electric fields is investigated in this paper. With stability and phase plane analysis, we first investigate in detail the dynamical properties of neuronal spike initiation induced by geometric parameter and internal coupling conductance. The geometric parameter is the ratio between soma area and total membrane area, which describes the proportion of area occupied by somatic chamber. It is found that varying it could qualitatively alter the bifurcation structures of equilibrium as well as neuronal phase portraits, which remain unchanged when varying internal coupling conductance. By analyzing the activating properties of somatic membrane currents at subthreshold potentials, we explore the relevant biophysical basis of spike initiation dynamics induced by these two parameters. It is observed that increasing geometric parameter could greatly decrease the intensity of the internal current flowing from soma to dendrite, which switches spike initiation dynamics from Hopf bifurcation to SNIC bifurcation; increasing internal coupling conductance could lead to the increase of this outward internal current, whereas the increasing range is so small that it could not qualitatively alter the spike initiation dynamics. These results highlight that neuronal geometric parameter is a crucial factor in determining the spike initiation dynamics to electric fields. The finding is useful to interpret the functional significance of neuronal biophysical properties in their encoding dynamics, which could contribute to uncovering how neuron encodes electric field signals.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Action Potentials / physiology*
  • Algorithms
  • Animals
  • Biophysical Phenomena
  • Extracellular Space
  • Models, Neurological*
  • Neurons / physiology*

Grants and funding

This work is supported by the National Natural Science Foundation of China under Grants 61072012 (URL: http://www.nsfc.gov.cn/publish/portal0/default.htm), 61172009 (URL: http://www.nsfc.gov.cn/publish/portal0/default.htm) and 61372010 (URL: http://www.nsfc.gov.cn/publish/portal0/default.htm), and Tianjin Municipal Natural Science Foundation under Grants 12JCZDJC21100 (URL: http://www.tstc.gov.cn/) and 13JCZDJC27900 (URL: http://www.tstc.gov.cn/). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.