Reduction of selenite by Azospirillum brasilense with the formation of selenium nanoparticles

Microb Ecol. 2014 Oct;68(3):495-503. doi: 10.1007/s00248-014-0429-y. Epub 2014 May 27.

Abstract

The ability to reduce selenite (SeO(3)(2-)) ions with the formation of selenium nanoparticles was demonstrated in Azospirillum brasilense for the first time. The influence of selenite ions on the growth of A. brasilense Sp7 and Sp245, two widely studied wild-type strains, was investigated. Growth of cultures on both liquid and solid (2 % agar) media in the presence of SeO(3)(2-) was found to be accompanied by the appearance of the typical red colouration. By means of transmission electron microscopy (TEM), electron energy loss spectroscopy (EELS) and X-ray fluorescence analysis (XFA), intracellular accumulation of elementary selenium in the form of nanoparticles (50 to 400 nm in diameter) was demonstrated for both strains. The proposed mechanism of selenite-to-selenium (0) reduction could involve SeO(3)(2-) in the denitrification process, which has been well studied in azospirilla, rather than a selenite detoxification strategy. The results obtained point to the possibility of using Azospirillum strains as endophytic or rhizospheric bacteria to assist phytoremediation of, and cereal cultivation on, selenium-contaminated soils. The ability of A. brasilense to synthesise selenium nanoparticles may be of interest to nanobiotechnology for "green synthesis" of bioavailable amorphous red selenium nanostructures.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Azospirillum brasilense / metabolism*
  • Color
  • Culture Media
  • Nanoparticles / chemistry*
  • Oxidation-Reduction
  • Selenious Acid / chemistry*
  • Selenium / chemistry

Substances

  • Culture Media
  • Selenious Acid
  • Selenium