Dosimetric consequences of intrafraction prostate motion in scanned ion beam radiotherapy

Radiother Oncol. 2014 Jul;112(1):100-5. doi: 10.1016/j.radonc.2014.03.022. Epub 2014 May 12.

Abstract

Background and purpose: Scanned-beam interplay with the intrafraction target motion may result in dose deterioration in particle therapy. The magnitude of this effect and the possibilities to mitigate it were investigated for carbon ion prostate treatments.

Methods and materials: For 12 prostate cases, 9 carbon ion treatment plans were prepared using 3 scanned-beam settings (spot sizes of 6, 7 and 9 mm and, respectively, raster pitches of 2, 2 and 3 mm) for 3 planning margins (3, 6 and 9 mm). Plans were recomputed in presence of 5 intrafraction prostate motion scenarios with and without intra-beam motion compensation.

Results: For 6 mm margin and 7 mm spot, the median (max) CTV D(95%) change was -0.2 (-2.6) pp (percentual points) with pure drift motion, -3.8 (-6.0) pp and -2.8 (-3.1) pp in transient motion scenarios and -4.8 (-7.7) pp and -1.8 (-5.7) pp in mixed motion scenarios. No particular raster setting brought distinct advantage, while planning margin expansion showed statistically significant effects for drift-dominated scenarios. Intra-beam motion compensation yielded improved CTV coverage.

Conclusion: Intrafraction prostate motion can lead to marked target coverage deterioration, dependent on individual motion patterns, which can be only partially avoided through planning-time countermeasures. Among possible delivery-time countermeasures, intra-beam motion compensation is capable of improving target coverage.

Keywords: Interplay effect; Intra-beam motion compensation; Intrafraction prostate movement; Ion beam therapy; Moving targets; Scanned-beam.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Dose Fractionation, Radiation
  • Heavy Ion Radiotherapy / methods*
  • Humans
  • Male
  • Movement*
  • Prostatic Neoplasms / radiotherapy*
  • Radiometry
  • Radiotherapy Planning, Computer-Assisted / methods*