Elucidating Oxygen Reduction Active Sites in Pyrolyzed Metal-Nitrogen Coordinated Non-Precious-Metal Electrocatalyst Systems

J Phys Chem C Nanomater Interfaces. 2014 May 1;118(17):8999-9008. doi: 10.1021/jp500781v. Epub 2014 Apr 2.

Abstract

Detailed understanding of the nature of the active centers in non-precious-metal-based electrocatalyst, and their role in oxygen reduction reaction (ORR) mechanistic pathways will have a profound effect on successful commercialization of emission-free energy devices such as fuel cells. Recently, using pyrolyzed model structures of iron porphyrins, we have demonstrated that a covalent integration of the Fe-N x sites into π-conjugated carbon basal plane modifies electron donating/withdrawing capability of the carbonaceous ligand, consequently improving ORR activity. Here, we employ a combination of in situ X-ray spectroscopy and electrochemical methods to identify the various structural and functional forms of the active centers in non-heme Fe/N/C catalysts. Both methods corroboratively confirm the single site 2e- × 2e- mechanism in alkaline media on the primary Fe2+-N4 centers and the dual-site 2e- × 2e- mechanism in acid media with the significant role of the surface bound coexisting Fe/Fe x O y nanoparticles (NPs) as the secondary active sites.