A polyoxovanadate as an advanced electrode material for supercapacitors

Chemphyschem. 2014 Jul 21;15(10):2162-9. doi: 10.1002/cphc.201400091. Epub 2014 May 9.

Abstract

Polyoxovanadate Na(6)V(10)O(28) is investigated for the first time as electrode material for supercapacitors (SCs). The electrochemical properties of Na(6)V(10)O(28) electrodes are studied in Li(+) -containing organic electrolyte (1 M LiClO(4) in propylene carbonate) by galvanostatic charge/discharge and cyclic voltammetry in a three-electrode configuration. Na(6)V(10)O(28) electrodes exhibit high specific capacitances of up to 354 F g(-1). An asymmetric SC with activated carbon as positive electrode and Na(6)V(10)O(28) as negative electrode is fabricated and exhibits a high energy density of 73 Wh kg(-1) with a power density of 312 W kg(-1), which successfully demonstrates that Na(6)V(10)O(28) is a promising electrode material for high-energy SC applications.

Keywords: electrochemistry; materials science; polyoxometalates; redox chemistry; supercapacitors.