Magic Numbers in DNA-Stabilized Fluorescent Silver Clusters Lead to Magic Colors

J Phys Chem Lett. 2014 Mar 20;5(6):959-963. doi: 10.1021/jz500146q. Epub 2014 Feb 27.

Abstract

DNA-stabilized silver clusters are remarkable for the selection of fluorescence color by the sequence of the stabilizing DNA oligomer. Yet despite a growing number of applications that exploit this property, no large-scale studies have probed origins of cluster color or whether certain colors occur more frequently than others. Here we employ a set of 684 randomly chosen 10-base oligomers to address these questions. Rather than a flat distribution, we find that specific color bands dominate. Cluster size data indicate that these "magic colors" originate from the existence of magic numbers for DNA-stabilized silver clusters, which differ from those of spheroidal gold clusters stabilized by small-molecule ligands. Elongated cluster structures, enforced by multiple base ligands along the DNA, can account for both magic number sizes and color variation around peak wavelength populations.