Proximal ADMM for multi-channel image reconstruction in spectral X-ray CT

IEEE Trans Med Imaging. 2014 Aug;33(8):1657-68. doi: 10.1109/TMI.2014.2321098. Epub 2014 Apr 30.

Abstract

The development of spectral X-ray computed tomography (CT) using binned photon-counting detectors has received great attention in recent years and has enabled selective imaging of contrast agents loaded with K-edge materials. A practical issue in implementing this technique is the mitigation of the high-noise levels often present in material-decomposed sinogram data. In this work, the spectral X-ray CT reconstruction problem is formulated within a multi-channel (MC) framework in which statistical correlations between the decomposed material sinograms can be exploited to improve image quality. Specifically, a MC penalized weighted least squares (PWLS) estimator is formulated in which the data fidelity term is weighted by the MC covariance matrix and sparsity-promoting penalties are employed. This allows the use of any number of basis materials and is therefore applicable to photon-counting systems and K-edge imaging. To overcome numerical challenges associated with use of the full covariance matrix as a data fidelity weight, a proximal variant of the alternating direction method of multipliers is employed to minimize the MC PWLS objective function. Computer-simulation and experimental phantom studies are conducted to quantitatively evaluate the proposed reconstruction method.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Algorithms*
  • Animals
  • Computer Simulation
  • Humans
  • Image Processing, Computer-Assisted / methods*
  • Models, Biological
  • Phantoms, Imaging
  • Radiography, Thoracic
  • Tomography, X-Ray Computed / methods*