Low susceptibility of invasive red lionfish (Pterois volitans) to a generalist ectoparasite in both its introduced and native ranges

PLoS One. 2014 May 5;9(5):e95854. doi: 10.1371/journal.pone.0095854. eCollection 2014.

Abstract

Escape from parasites in their native range is one of many mechanisms that can contribute to the success of an invasive species. Gnathiid isopods are blood-feeding ectoparasites that infest a wide range of fish hosts, mostly in coral reef habitats. They are ecologically similar to terrestrial ticks, with the ability to transmit blood-borne parasites and cause damage or even death to heavily infected hosts. Therefore, being highly resistant or highly susceptible to gnathiids can have significant fitness consequences for reef-associated fishes. Indo-Pacific red lionfish (Pterois volitans) have invaded coastal habitats of the western tropical and subtropical Atlantic and Caribbean regions. We assessed the susceptibility of red lionfish to parasitic gnathiid isopods in both their native Pacific and introduced Atlantic ranges via experimental field studies during which lionfish and other, ecologically-similar reef fishes were caged and exposed to gnathiid infestation on shallow coral reefs. Lionfish in both ranges had very few gnathiids when compared with other species, suggesting that lionfish are not highly susceptible to infestation by generalist ectoparasitic gnathiids. While this pattern implies that release from gnathiid infestation is unlikely to contribute to the success of lionfish as invaders, it does suggest that in environments with high gnathiid densities, lionfish may have an advantage over species that are more susceptible to gnathiids. Also, because lionfish are not completely resistant to gnathiids, our results suggest that lionfish could possibly have transported blood parasites between their native Pacific and invaded Atlantic ranges.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Animals
  • Ectoparasitic Infestations*
  • Fish Diseases / parasitology*
  • Introduced Species*
  • Isopoda*
  • Perciformes / parasitology*

Grants and funding

This work was funded in part by Arkansas State University; a National Science Foundation (N.S.F.) Graduate Research Fellowship; scholarships from the American Museum of Natural History and the American Academy of Underwater Sciences to LJ Tuttle; and grants from the U.S. N.S.F. (08-51162 and 12-33027, MA Hixon, PI). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.