Selective and Reversible Photochemical Derivatization of Cysteine Residues in Peptides and Proteins

Chem Sci. 2014 Apr 1;5(4):1591-1598. doi: 10.1039/C3SC51691A.

Abstract

Selective derivatization of solvent-exposed cysteine residues in peptides and proteins is achieved by brief irradiation of an aqueous solution containing 3-(hydroxymethyl)-2-naphthol derivatives (NQMPs) with 350 nm fluorescent lamp. NQMP can be conjugated with various moieties, such as PEG, dyes, carbohydrates, or possess a fragment for further selective derivatization, e.g., biotin, azide, alkyne, etc. Attractive features of this labeling approach include an exceptionally fast rate of the reaction and a requirement for low equivalence of the reagent. The NQMP-thioether linkage is stable under ambient conditions, survives protein digestion and MS analysis. Irradiation of NQMP-labeled protein in a dilute solution (<40 μM) or in the presence of a vinyl ether results in a traceless release of the substrate. The reversible biotinylation of bovine serum albumin, as well as capture and release of this protein using NeutrAvidin Agarose resin beads has been demonstrated.