Critical state of sand matrix soils

ScientificWorldJournal. 2014 Mar 16:2014:290207. doi: 10.1155/2014/290207. eCollection 2014.

Abstract

The Critical State Soil Mechanic (CSSM) is a globally recognised framework while the critical states for sand and clay are both well established. Nevertheless, the development of the critical state of sand matrix soils is lacking. This paper discusses the development of critical state lines and corresponding critical state parameters for the investigated material, sand matrix soils using sand-kaolin mixtures. The output of this paper can be used as an interpretation framework for the research on liquefaction susceptibility of sand matrix soils in the future. The strain controlled triaxial test apparatus was used to provide the monotonic loading onto the reconstituted soil specimens. All tested soils were subjected to isotropic consolidation and sheared under undrained condition until critical state was ascertain. Based on the results of 32 test specimens, the critical state lines for eight different sand matrix soils were developed together with the corresponding values of critical state parameters, M, λ, and Γ. The range of the value of M, λ, and Γ is 0.803-0.998, 0.144-0.248, and 1.727-2.279, respectively. These values are comparable to the critical state parameters of river sand and kaolin clay. However, the relationship between fines percentages and these critical state parameters is too scattered to be correlated.

MeSH terms

  • Aluminum Silicates / chemistry
  • Aluminum Silicates / standards
  • Clay
  • Compressive Strength*
  • Particle Size
  • Silicon Dioxide / chemistry
  • Silicon Dioxide / standards
  • Soil / chemistry*
  • Soil / standards*

Substances

  • Aluminum Silicates
  • Soil
  • Silicon Dioxide
  • Clay