Linalool is a PPARα ligand that reduces plasma TG levels and rewires the hepatic transcriptome and plasma metabolome

J Lipid Res. 2014 Jun;55(6):1098-110. doi: 10.1194/jlr.M045807. Epub 2014 Apr 20.

Abstract

We investigated the hypotriglyceridemic mechanism of action of linalool, an aromatic monoterpene present in teas and fragrant herbs. Reporter gene and time-resolved fluorescence resonance energy transfer assays demonstrated that linalool is a direct ligand of PPARα. Linalool stimulation reduced cellular lipid accumulation regulating PPARα-responsive genes and significantly induced FA oxidation, and its effects were markedly attenuated by silencing PPARα expression. In mice, the oral administration of linalool for 3 weeks reduced plasma TG concentrations in Western-diet-fed C57BL/6J mice (31%, P < 0.05) and human apo E2 mice (50%, P < 0.05) and regulated hepatic PPARα target genes. However, no such effects were seen in PPARα-deficient mice. Transcriptome profiling revealed that linalool stimulation rewired global gene expression in lipid-loaded hepatocytes and that the effects of 1 mM linalool were comparable to those of 0.1 mM fenofibrate. Metabolomic analysis of the mouse plasma revealed that the global metabolite profiles were significantly distinguishable between linalool-fed mice and controls. Notably, the concentrations of saturated FAs were significantly reduced in linalool-fed mice. These findings suggest that the appropriate intake of a natural aromatic compound could exert beneficial metabolic effects by regulating a cellular nutrient sensor.

Keywords: agonist; linalool; peroxisome proliferator-activated receptor-α; triglyceride.

MeSH terms

  • Acyclic Monoterpenes
  • Animals
  • Hepatocytes / metabolism
  • Liver / metabolism*
  • Male
  • Metabolome / drug effects*
  • Mice
  • Mice, Mutant Strains
  • Monoterpenes / pharmacology*
  • PPAR alpha / agonists
  • PPAR alpha / biosynthesis*
  • PPAR alpha / genetics
  • Transcriptome / drug effects*
  • Triglycerides / blood*
  • Triglycerides / genetics

Substances

  • Acyclic Monoterpenes
  • Monoterpenes
  • PPAR alpha
  • Triglycerides
  • linalool