Cotton fabrics treated with novel oxidic phases acting as effective smoke suppressants

Carbohydr Polym. 2012 Sep 1;90(1):251-60. doi: 10.1016/j.carbpol.2012.05.032. Epub 2012 May 17.

Abstract

Sol-gel processes have been applied to cotton fabrics in order to coat the fibres with a silica film, able to improve their thermo-oxidative resistance and their combustion behaviour under the irradiative heat flow of a cone calorimeter. To this aim, tetramethoxysilane, inorganic precursor of the silica phase, has been employed alone or coupled with species having either smoke suppressant features (namely, zinc oxide, zinc acetate dihydrate and zinc borate) or well known flame retardant properties (like ammonium pentaborate octahydrate, boron phosphate, ammonium polyphosphate and 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide). In addition, the use of barium sulphate, which is a smoke suppressant and, at the same time, a flame retardant, has been investigated. Cone calorimetry turned out to be a suitable technique for assessing the flammability and smoke production of the treated fabrics (particularly when referring to total smoke release, smoke production rate and CO and CO2 yields). The composition and morphology of the deposited coatings, assessed by scanning electron microscopy, have been found to influence their combustion behaviour, as well as their thermal and thermo-oxidative stability evaluated by thermogravimetric analysis in nitrogen and air, respectively.