Structural and biophysical characterization of Staphylococcus aureus SaMazF shows conservation of functional dynamics

Nucleic Acids Res. 2014 Jun;42(10):6709-25. doi: 10.1093/nar/gku266. Epub 2014 Apr 19.

Abstract

The Staphylococcus aureus genome contains three toxin-antitoxin modules, including one mazEF module, SamazEF. Using an on-column separation protocol we are able to obtain large amounts of wild-type SaMazF toxin. The protein is well-folded and highly resistant against thermal unfolding but aggregates at elevated temperatures. Crystallographic and nuclear magnetic resonance (NMR) solution studies show a well-defined dimer. Differences in structure and dynamics between the X-ray and NMR structural ensembles are found in three loop regions, two of which undergo motions that are of functional relevance. The same segments also show functionally relevant dynamics in the distantly related CcdB family despite divergence of function. NMR chemical shift mapping and analysis of residue conservation in the MazF family suggests a conserved mode for the inhibition of MazF by MazE.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Bacterial Proteins / chemistry*
  • Bacterial Proteins / isolation & purification
  • Bacterial Proteins / metabolism
  • Bacterial Toxins / chemistry*
  • Bacterial Toxins / isolation & purification
  • Bacterial Toxins / metabolism
  • Binding Sites
  • DNA-Binding Proteins / chemistry
  • Endoribonucleases / chemistry
  • Escherichia coli Proteins / chemistry
  • Models, Molecular
  • Protein Conformation
  • Protein Unfolding
  • Staphylococcus aureus*

Substances

  • Bacterial Proteins
  • Bacterial Toxins
  • DNA-Binding Proteins
  • Escherichia coli Proteins
  • MazF protein, E coli
  • Endoribonucleases

Associated data

  • PDB/2MF2
  • PDB/4MZM
  • PDB/4MZP
  • PDB/4MZT