Fabrication of solution processed carbon nanotube embedded polyvinyl alcohol composite film for non-volatile memory device

J Nanosci Nanotechnol. 2014 Mar;14(3):2381-7. doi: 10.1166/jnn.2014.8489.

Abstract

Carbon nanotubes (CNTs) were synthesized by chemical vapor deposition using nickel coated stainless steel prepared by electrophoretic deposition. CNTs were embedded in polyvinyl alcohol (PVA) which acts as an organic insulator to fabricate Si/PVA/CNT/PVA/Al Metal-Insulator-Semiconductor type memory devices. The effect of CNT content in the charge storage capacity of PVA-CNT composite film was investigated. The hysteresis obtained from the capacitance-voltage (CV) measurement resulted in a memory window of 1.9 V with 3% CNT loading with the gate voltage sweep of +/- 6 V at 1 MHz under room temperature. The memory window of the devices was due to electron injection into the CNT charge storage elements from the top electrode through PVA. The extensive pi-conjugation along the CNT axis traps the electrons in the CNT network. The ON/OFF state current ratio of Si/Al/PVA-CNT/AI device with 3% CNT in PVA demonstrated significantly a lower turn-on voltage of -1 V and a higher ON/OFF state current ratio of 10(7). The non-volatile and reprogrammable switching behavior of the device demonstrated the characteristic of a rewritable memory.

Publication types

  • Research Support, Non-U.S. Gov't