Level locomotion in wood ants: evidence for grounded running

J Exp Biol. 2014 Jul 1;217(Pt 13):2358-70. doi: 10.1242/jeb.098426. Epub 2014 Apr 17.

Abstract

In order to better understand the strategies of locomotion in small insects, we have studied continuous level locomotion of the wood ant species Formica polyctena. We determined the three-dimensional centre of mass kinematics during the gait cycle and recorded the ground reaction forces of single legs utilising a self-developed test site. Our findings show that the animals used the same gait dynamics across a wide speed range without dissolving the tripodal stride pattern. To achieve higher velocities, the ants proportionally increased stride length and stepping frequency. The centre of mass energetics indicated a bouncing gait, in which horizontal kinetic and gravitational potential energy fluctuated in close phase. We determined a high degree of compliance especially in the front legs, as the effective leg length was nearly halved during the contact phase. This leads to only small vertical oscillations of the body, which are important in maintaining ground contact. Bouncing gaits without aerial phases seem to be a common strategy in small runners and can be sufficiently described by the bipedal spring-loaded inverted pendulum model. Thus, with our results, we provide evidence that wood ants perform 'grounded running'.

Keywords: Ant locomotion; Arthropod; Formica polyctena; Ground reaction force; Grounded running; Insect biomechanics.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Ants / physiology*
  • Biomechanical Phenomena
  • Kinetics
  • Running