Nanoparticle-based drug delivery to improve the efficacy of antiretroviral therapy in the central nervous system

Int J Nanomedicine. 2014 Apr 7:9:1757-69. doi: 10.2147/IJN.S45886. eCollection 2014.

Abstract

Antiretroviral drug therapy plays a cornerstone role in the treatment of human immunodeficiency virus (HIV)/acquired immunodeficiency syndrome patients. Despite obvious advances over the past 3 decades, new approaches toward improved management of infected individuals are still required. Drug distribution to the central nervous system (CNS) is required in order to limit and control viral infection, but the presence of natural barrier structures, in particular the blood-brain barrier, strongly limits the perfusion of anti-HIV compounds into this anatomical site. Nanotechnology-based approaches may help providing solutions for antiretroviral drug delivery to the CNS by potentially prolonging systemic drug circulation, increasing the crossing and reducing the efflux of active compounds at the blood-brain barrier, and providing cell/tissue-targeting and intracellular drug delivery. After an initial overview on the basic features of HIV infection of the CNS and barriers to active compound delivery to this anatomical site, this review focuses on recent strategies based on antiretroviral drug-loaded solid nanoparticles and drug nanosuspensions for the potential management of HIV infection of the CNS.

Keywords: HIV/AIDS; blood–brain barrier; drug targeting; efflux transporters; protease inhibitors.

Publication types

  • Research Support, Non-U.S. Gov't
  • Review

MeSH terms

  • Anti-Retroviral Agents / administration & dosage*
  • Drug Compounding / methods
  • Drug Synergism
  • Encephalitis, Viral / therapy*
  • HIV Infections / therapy*
  • Humans
  • Nanocapsules / chemistry
  • Nanocapsules / therapeutic use*
  • Nanocapsules / ultrastructure*

Substances

  • Anti-Retroviral Agents
  • Nanocapsules