Catalytic decomposition of CF4 over iron promoted mesoporous catalysts

J Nanosci Nanotechnol. 2014 Apr;14(4):3202-8. doi: 10.1166/jnn.2014.8581.

Abstract

A series of mesoporous catalysts (MCM-41) promoted by iron nanoparticles were prepared by the co-precipitation method and tested for the decomposition of carbon tetrafluoride (CF4). The addition of iron oxide nanoparticles to MCM-41 led to an improvement in the catalytic activity for CF4 decomposition. The catalyst was the most active around 5 wt% iron added to MCM-41. Methods of X-ray Powder Diffractometer, Scanning Electron Microscope-Energy Dispersive Spectrometer, BET, and high resolution transmission electron microscopy were used to characterize the MCM-41 catalysts. The analytical results indicated that the addition of over 2 wt% iron nanoparticles increased the surface area of MCM-41, which was the rate-determining factor of CF4 decomposition over MCM-41 catalyst. In conclusion, the addition of iron was responsible for the enhancement of catalytic activity of MCM-41.