Photocatalytic degradation of reactive red 141 in the presence of Cr(VI) using TiO2 nanotubes

J Nanosci Nanotechnol. 2014 Apr;14(4):2718-24. doi: 10.1166/jnn.2014.8630.

Abstract

TiO2 nanotubes were prepared by hydrothermal process, then characterized using Brunauer-Emmett-Teller (BET), transmission electron microscopy (TEM), X-ray diffraction (XRD) and UV-Visible spectroscopy measurements. The photodegradation performance assessment of Reactive Red 141 (RR141) with near visible light irradiation (lambda = 380 nm) was carried out under different catalyst doses, dye concentrations, pH and initial Cr(VI) concentrations by TiO2 powder and nanotubes. The results showed that the specific surface area of TiO2 nanotubes were 152 m2 g(-1), about three times larger than that of TiO2 powder which was roughly 51 m2 g(-1). The TiO2 nanotubes did not affect the lattice structure of the TiO2. The adsorption amount increases as the dosage and RR141 concentration increases. However, the decolonization efficiency decreased with increasing initial RR141 concentration. Results also showed that an acidic solution is more favorable for photocatalytic degradation of RR141. On the other hand, Cr(VI) can be adsorbed on the surface of TiO2 nanotubes to affect the decolonization efficiency of RR141.