Low temperature growth of graphene on Cu-Ni alloy nanofibers for stable, flexible electrodes

Nanoscale. 2014 May 21;6(10):5110-5. doi: 10.1039/c3nr06246e.

Abstract

Here, we report a facile approach to grow graphene on Cu-Ni alloy NFs at a temperature as low as 450-500 °C, in which solid polystyrene (PS) carbon source and two-temperature-zone furnace were used to prepare graphene. The graphene coated Cu-Ni (designated as G-coated Cu-Ni) NFs were fully characterized by Raman spectra, XPS, FESEM and TEM. The G-coated Cu-Ni NFs exhibited excellent anti-oxidation, anti-corrosion and flexibility properties. The anti-corrosion of G-coated Cu-Ni NFs was examined through cyclic voltammetry measurements by using sea water as the electrolyte solution. Finally, using crossed arrays of G-coated Cu-Ni NF composite electrode thin films (sheet resistance is ∼10 Ω sq(-1)) as the flexible electrode, an alternating current (AC) electroluminescent (EL) device with a configuration of G-coated Cu-Ni/active layer (ZnS : Cu phosphor)/dielectric layer (BaTiO3)/front electrode (CNT) has been fabricated. Under an AC voltage of 200 V and frequency of 1300 Hz, the ACEL device emitted blue light at 496 nm with a brightness of 103 cd m(-2).

Publication types

  • Research Support, Non-U.S. Gov't