An acetylcholinesterase biosensor based on graphene-gold nanocomposite and calcined layered double hydroxide

Enzyme Microb Technol. 2014 May 10:58-59:8-13. doi: 10.1016/j.enzmictec.2014.02.004. Epub 2014 Feb 17.

Abstract

In this study, a novel acetylcholinesterase-based biosensor was fabricated. Acetylcholinesterase (AChE) was immobilized onto a glassy carbon electrode (GCE) with the aid of Cu-Mg-Al calcined layered double hydroxide (CLDH). CLDH can provide a bigger effective surface area for AChE loading, which could improve the precision and stability of AChE biosensor. However, the poor electroconductibility of CLDHs could lead to the low sensitivity of AChE biosensor. In order to effectively compensate the disadvantages of CLDHs, graphene-gold nanocomposites were used for improving the electron transfer rate. Thus, the graphene-gold nanocomposite (GN-AuNPs) was firstly modified onto the GCE, and then the prepared CLDH-AChE composite was immobilized onto the modified GCE to construct a sensitive AChE biosensor for pesticides detection. Relevant parameters were studied in detail and optimized, including the pH of the acetylthiocholine chloride (ATCl) solution, the amount of AChE immobilized on the biosensor and the inhibition time governing the analytical performance of the biosensor. The biosensor detected chlorpyrifos at concentrations ranging from 0.05 to 150μg/L. The detection limit for chlorpyrifos was 0.05μg/L.

Keywords: Acetylcholinesterase biosensor; Cu–Mg–Al calcined layered double hydroxide; Graphene–gold nanocomposite; Pesticides.

Publication types

  • Evaluation Study
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Acetylcholinesterase*
  • Adsorption
  • Aluminum Silicates
  • Anions
  • Biosensing Techniques*
  • Chlorpyrifos / analysis*
  • Cholinesterase Inhibitors / analysis*
  • Clay
  • Colloids
  • Electrochemical Techniques / instrumentation*
  • Electrodes
  • Endpoint Determination
  • Enzymes, Immobilized*
  • Equipment Design
  • Food Contamination / analysis*
  • Metals
  • Nanocomposites*
  • Pesticide Residues / analysis*
  • Reproducibility of Results
  • Sensitivity and Specificity
  • Surface Properties
  • Vegetables / chemistry

Substances

  • Aluminum Silicates
  • Anions
  • Cholinesterase Inhibitors
  • Colloids
  • Enzymes, Immobilized
  • Metals
  • Pesticide Residues
  • Acetylcholinesterase
  • Chlorpyrifos
  • Clay