Comparison of modelling techniques for milk-production forecasting

J Dairy Sci. 2014;97(6):3352-63. doi: 10.3168/jds.2013-7451. Epub 2014 Apr 14.

Abstract

The objective of this study was to assess the suitability of 3 different modeling techniques for the prediction of total daily herd milk yield from a herd of 140 lactating pasture-based dairy cows over varying forecast horizons. A nonlinear auto-regressive model with exogenous input, a static artificial neural network, and a multiple linear regression model were developed using 3 yr of historical milk-production data. The models predicted the total daily herd milk yield over a full season using a 305-d forecast horizon and 50-, 30-, and 10-d moving piecewise horizons to test the accuracy of the models over long- and short-term periods. All 3 models predicted the daily production levels for a full lactation of 305 d with a percentage root mean square error (RMSE) of ≤ 12.03%. However, the nonlinear auto-regressive model with exogenous input was capable of increasing its prediction accuracy as the horizon was shortened from 305 to 50, 30, and 10 d [RMSE (%)=8.59, 8.1, 6.77, 5.84], whereas the static artificial neural network [RMSE (%)=12.03, 12.15, 11.74, 10.7] and the multiple linear regression model [RMSE (%)=10.62, 10.68, 10.62, 10.54] were not able to reduce their forecast error over the same horizons to the same extent. For this particular application the nonlinear auto-regressive model with exogenous input can be presented as a more accurate alternative to conventional regression modeling techniques, especially for short-term milk-yield predictions.

Keywords: dairy production; milk-production forecasting; modelling.

Publication types

  • Comparative Study

MeSH terms

  • Animals
  • Cattle
  • Dairying
  • Female
  • Lactation
  • Linear Models*
  • Milk / metabolism*
  • Neural Networks, Computer*