Vibrating H2(+)((2)Σg(+), JM = 00) ion as a pulsating quantum bubble in the laboratory frame

J Phys Chem A. 2014 Sep 18;118(37):8411-25. doi: 10.1021/jp5017246. Epub 2014 May 2.

Abstract

We present quantum dynamics simulations of the concerted nuclear and electronic densities and flux densities of the vibrating H2(+) ion with quantum numbers (2)Σg(+), JM = 00 corresponding to the electronic and rotational ground state, in the laboratory frame. The underlying theory is derived using the nonrelativistic and Born–Oppenheimer approximations. It is well-known that the nuclear density of the nonrotating ion (JM = 00) is isotropic. We show that the electronic density is isotropic as well, confirming intuition. As a consequence, the nuclear and electronic flux densities have radial symmetry. They are related to the corresponding densities by radial continuity equations with proper boundary conditions. The time evolutions of all four observables, i.e., the nuclear and electronic densities and flux densities, are illustrated by means of characteristic snapshots. As an example, we consider the scenario with initial condition corresponding to preparation of H2(+) by near-resonant weak field one-photon-photoionization of the H2 molecule in its ground state, (1)Σg(+), vJM = 000. Accordingly, the vibrating, nonrotating H2(+) ion appears as pulsating quantum bubble in the laboratory frame, quite different from traditional considerations of vibrating H2+ in the molecular frame, or of the familiar alternative scenario of aligned vibrating H2(+) in the laboratory frame.