Synthetic biology platform of CoryneBrick vectors for gene expression in Corynebacterium glutamicum and its application to xylose utilization

Appl Microbiol Biotechnol. 2014 Jul;98(13):5991-6002. doi: 10.1007/s00253-014-5714-7. Epub 2014 Apr 5.

Abstract

Currently, the majority of tools in synthetic biology have been designed and constructed for model organisms such as Escherichia coli and Saccharomyces cerevisiae. In order to broaden the spectrum of organisms accessible to such tools, we established a synthetic biological platform, called CoryneBrick, for gene expression in Corynebacterium glutamicum as a set of E. coli-C. glutamicum shuttle vectors whose elements are interchangeable with BglBrick standard parts. C. glutamicum is an established industrial microorganism for the production of amino acids, proteins, and commercially promising chemicals. Using the CoryneBrick vectors, we showed various time-dependent expression profiles of a red fluorescent protein. This CoryneBrick platform was also applicable for two-plasmid expression systems with a conventional C. glutamicum expression vector. In order to demonstrate the practical application of the CoryneBrick vectors, we successfully reconstructed the xylose utilization pathway in the xylose-negative C. glutamicum wild type by fast BglBrick cloning methods using multiple genes encoding for xylose isomerase and xylulose kinase, resulting in a growth rate of 0.11 ± 0.004 h(-1) and a xylose uptake rate of 3.35 mmol/gDW/h when 1 % xylose was used as sole carbon source. Thus, CoryneBrick vectors were shown to be useful engineering tools in order to exploit Corynebacterium as a synthetic platform for the production of chemicals by controllable expression of the genes of interest.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Corynebacterium glutamicum / genetics*
  • Corynebacterium glutamicum / metabolism*
  • DNA, Bacterial / genetics
  • Gene Expression*
  • Gene Regulatory Networks*
  • Genes, Reporter
  • Genetic Vectors
  • Luminescent Proteins / biosynthesis
  • Luminescent Proteins / genetics
  • Metabolic Engineering
  • Metabolic Networks and Pathways / genetics
  • Molecular Sequence Data
  • Red Fluorescent Protein
  • Sequence Analysis, DNA
  • Synthetic Biology / methods*
  • Xylose / metabolism*

Substances

  • DNA, Bacterial
  • Luminescent Proteins
  • Xylose

Associated data

  • GENBANK/KJ021042