Cyanobacteria from terrestrial and marine sources contain apoptogens able to overcome chemoresistance in acute myeloid leukemia cells

Mar Drugs. 2014 Apr 3;12(4):2036-53. doi: 10.3390/md12042036.

Abstract

In this study, we investigated forty cyanobacterial isolates from biofilms, gastropods, brackish water and symbiotic lichen habitats. Their aqueous and organic extracts were used to screen for apoptosis-inducing activity against acute myeloid leukemia cells. A total of 28 extracts showed cytotoxicity against rat acute myeloid leukemia (IPC-81) cells. The design of the screen made it possible to eliminate known toxins, such as microcystins and nodularin, or known metabolites with anti-leukemic activity, such as adenosine and its analogs. A cytotoxicity test on human embryonic kidney (HEK293T) fibroblasts indicated that 21 of the 28 extracts containing anti-acute myeloid leukemia (AML) activity showed selectivity in favor of leukemia cells. Extracts L26-O and L30-O were able to partly overcome the chemotherapy resistance induced by the oncogenic protein Bcl-2, whereas extract L1-O overcame protection from the deletion of the tumor suppressor protein p53. In conclusion, cyanobacteria are a prolific resource for anti-leukemia compounds that have potential for pharmaceutical applications. Based on the variety of cellular responses, we also conclude that the different anti-leukemic compounds in the cyanobacterial extracts target different elements of the death machinery of mammalian cells.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Antineoplastic Agents / isolation & purification
  • Antineoplastic Agents / pharmacology*
  • Apoptosis / drug effects*
  • Cell Line, Tumor
  • Cyanobacteria / chemistry*
  • Cyanobacteria / isolation & purification
  • Drug Resistance, Neoplasm
  • Fibroblasts / drug effects
  • Fibroblasts / metabolism
  • HEK293 Cells
  • Humans
  • Leukemia, Myeloid, Acute / drug therapy*
  • Leukemia, Myeloid, Acute / pathology
  • Rats

Substances

  • Antineoplastic Agents