The effects of liquid height/volume, initial concentration of reactant and acoustic power on sonochemical oxidation

Ultrason Sonochem. 2014 Nov;21(6):1988-93. doi: 10.1016/j.ultsonch.2014.03.005. Epub 2014 Mar 20.

Abstract

Even though much knowledge on acoustic cavitation and its application has been accumulated over the past decades, further research is still required to develop industrial uses of acoustic cavitation. It is because the available information is mainly based on small-scale sonoreactors and the design and optimization of sonoreactors for large-scale applications have not been widely studied. In this study, the effects of liquid height/volume, initial concentration of the reactant and input acoustic power on sonochemical oxidation reactions including iodide ion oxidation, As(III) oxidation, and hydrogen peroxide generation were investigated using a 291kHz sonoreactor with various liquid height/volumes (50, 100, 200, 300, 500, and 1000mL) and input powers (23, 40, and 82W). As the liquid height/volume and the input power changed, the power density varied from 23 to 1640W/L and the maximum cavitation yields of triiodide ion for 23, 40, and 82W were observed at 0.05, 0.1, and 0.2/0.3L, respectively. It was found that low power was more effective for the small volume and the large volume required high power level and the moderate power density, approximately 400W/L, was suggested for the sonochemical oxidation of iodide ion in the 291kHz sonoreactor in this study. Similar results were observed in the generation of hydrogen peroxide and the sonochemical oxidation of As(III) to As(V). It was also revealed that KI dosimetry could be applicable for the estimation of the sonochemical reactions of non-volatile compounds such as As(III).

Keywords: Cavitation yield; Initial concentration; Liquid height/volume; Power; Sonoreactor design.

Publication types

  • Research Support, Non-U.S. Gov't