Single-cell control of initial spatial structure in biofilm development using laser trapping

Langmuir. 2014 Apr 22;30(15):4522-30. doi: 10.1021/la500128y. Epub 2014 Apr 9.

Abstract

Biofilms are sessile communities of microbes that are spatially structured by an embedding matrix. Biofilm infections are notoriously intractable. This arises, in part, from changes in the bacterial phenotype that result from spatial structure. Understanding these interactions requires methods to control the spatial structure of biofilms. We present a method for growing biofilms from initiating cells whose positions are controlled with single-cell precision using laser trapping. The native growth, motility, and surface adhesion of positioned microbes are preserved, as we show for model organisms Pseudomonas aeruginosa and Staphylococcus aureus. We demonstrate that laser-trapping and placing bacteria on surfaces can reveal the effects of spatial structure on bacterial growth in early biofilm development.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Bacterial Adhesion / physiology
  • Biofilms / growth & development*
  • Pseudomonas aeruginosa / growth & development
  • Staphylococcus aureus / growth & development