Study on the productivity of silicon nanoparticles by picosecond laser ablation in water: towards gram per hour yield

Opt Express. 2014 Feb 10;22(3):3117-27. doi: 10.1364/OE.22.003117.

Abstract

An investigation on the productivity of silicon nanoparticles by picosecond laser ablation in water is presented. A systematic experimental study is performed as function of the laser wavelength, fluence and ablation time. In case of ablation at 1064 nm silicon nanoparticles with a mean diameter of 40 nm are produced. Instead, ablation at 355 nm results in nanoparticles with a mean diameter of 9 nm for short ablation time while the mean diameter decreases to 3 nm at longer ablation time. An original model based on the in-situ ablation/photo-fragmentation physical process is developed, and it very well explains the experimental productivity findings. The reported phenomenological model has a general validity, and it can be applied to analyze pulsed laser ablation in liquid in order to optimize the process parameters for higher productivity. Finally, an outlook is given towards gram per hour yield of ultra-small silicon nanoparticles.

Publication types

  • Research Support, Non-U.S. Gov't