A cobalt pyrenylnitronylnitroxide single-chain magnet with high coercivity and record blocking temperature

Chemistry. 2014 Apr 25;20(18):5460-7. doi: 10.1002/chem.201304852. Epub 2014 Mar 18.

Abstract

Coordination of a [Co(hfac)2] moiety (hfac = hexafluoroacetylacetonate) with a nitronylnitroxide radical linked to bulky, rigid pyrene (PyrNN) gives a helical 1:1 chain complex, in which both oxygen atoms of the radical NO(·) groups are bonded to Co(II) ions with strong antiferromagnetic exchange. The complex shows single-chain magnet (SCM) behavior with frequency-dependent magnetic susceptibility, field-cooled and zero-field-cooled susceptibility divergence with a high blocking temperature of around 14 K (a record among SCMs), and hysteresis with a very large coercivity of 32 kOe at 8 K. The magnetic behavior is partly related to good chain isolation induced by the large pyrene units. Two magnetic relaxation processes have been observed, a slower one attributable to longer, and a faster one attributable to short chains. No evidence of magnetic ordering has been found.

Keywords: cobalt; hysteresis; magnetic properties; radicals; single-chain magnets.