Comparative genomics and phylogenomics of hemotrophic mycoplasmas

PLoS One. 2014 Mar 18;9(3):e91445. doi: 10.1371/journal.pone.0091445. eCollection 2014.

Abstract

Hemotrophic mycoplasmas (hemoplasmas) are a group of animal pathogens of the Mollicutes class. Recently, the genomes of 8 hemoplasmas have been completely sequenced. The aim of this study was to gain a better understanding of their genomic features and relationship to other Mycoplasma species. The genome structure and dynamics of hemoplasmas were analyzed by evaluating gene synteny, adaptive evolution of paralogous gene families (PGF) and horizontal gene transfer (HGT). The Mollicutes class was then phylogenetically analyzed by constructing a distance matrix of the 16S rRNA genes and a phylogenetic tree with 32 conserved, concatenated proteins. Our results suggest that the hemoplasmas have dynamic genomes. The genome size variation (from 547 to 1,545 genes) indicates substantial gene gain/loss throughout evolution. Poorly conserved gene syntenies among hemoplasmas, positional shuffling of paralogous genes between strains, HGT, and codons under positive selection in PGFs were also observed. When compared to other Mollicutes species, the hemoplasmas experienced further metabolic reduction, and the 16S rRNA gene distance matrix of the available mollicutes suggests that these organisms presently constitute the most divergent clade within its class. Our phylogenetic tree of concatenated proteins showed some differences when compared to the 16S rRNA gene tree, but non-mycoplasma organisms, such as Ureaplasma spp. and Mesoplasma spp., continue to branch within Mycoplasma clades. In conclusion, while the hemoplasmas experienced further metabolic shrinkage through gene loss, PGFs with positively selected codons are likely beneficial to these species. Phylogeny of the mollicutes based on 16S rRNA genes or concatenated proteins do not obey the current taxonomy. The metabolism and genetic diversity of the mollicutes, the presence of HGT, and lack of standard for genus circumscription are likely to hinder attempts to classify these organisms based on phylogenetic analyses.

Publication types

  • Comparative Study
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Codon
  • Evolution, Molecular
  • Gene Transfer, Horizontal
  • Genome Size
  • Genome, Bacterial*
  • Genomics*
  • Metabolic Networks and Pathways / genetics
  • Mycoplasma / classification
  • Mycoplasma / genetics*
  • Mycoplasma / metabolism
  • Phylogeny*
  • RNA, Ribosomal, 16S / genetics*
  • Synteny

Substances

  • Codon
  • RNA, Ribosomal, 16S

Grants and funding

Funding support was provided from Morris Animal Foundation, project number D10FE-004. Funding support for PhD studies was provided by the Brazilian Ministério da Educação through Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) and Fulbright Commission - Fulbright-Capes Scholarship Program. CAPES-Fulbright Program, ID 167307/6. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.