Nuclear receptor gene alteration in human induced pluripotent stem cells with hepatic differentiation propensity

Hepatol Res. 2014 Dec;44(14):E408-19. doi: 10.1111/hepr.12329. Epub 2014 May 6.

Abstract

Aim: Human induced pluripotent stem (hiPS) cells are an alternative cell source of regenerative medicine for liver disease. Because variations in hepatic differentiation efficacy among hiPS cells exist, it is important to select a hiPS cell line with hepatic differentiation propensity. In addition, nuclear receptors (NR) regulate essential biological processes including differentiation and development. In this study, we identified the hiPS cell line with hepatic differentiation propensity and examined expression levels of 48 NR during this process.

Methods: We screened 28 hiPS cell lines, which are established from various tissues of healthy persons with various reprogramming methods, using a three-step differentiation method, and examined expression levels of 48 NR by quantitative real-time polymerase chain reaction during the differentiation process in the selected cells.

Results: hiPS-RIKEN-2B and hiPS-RIKEN-2F cells have hepatic differentiation propensity. Differentiation propensity towards endoderm was affected by donor origin but not by reprogramming methods or cell type of origins. Expression levels of NR were closely associated with those of hepatic differentiation markers. Furthermore, expression patterns of NR were categorized as five patterns. In particular, seven NR such as chicken ovalbumin upstream promoter transcription factor 1, retinoic acid receptor α, peroxisome proliferator-activated receptor-γ, progesterone receptor, photoreceptor cell-specific nuclear receptor, tailless homolog orphan receptor and glucocorticoid receptor were identified as the genes of which expression gradually goes up with differentiation.

Conclusion: These findings will be useful for not only elucidating mechanisms of hepatic differentiation of hiPS cells but also cell-based therapy for liver diseases.

Keywords: hepatic differentiation; hepatic differentiation propensity; human induced pluripotent stem cells; nuclear receptor.