Epigallocatechin gallate decreases the micellar solubility of cholesterol via specific interaction with phosphatidylcholine

J Agric Food Chem. 2014 Apr 2;62(13):2881-90. doi: 10.1021/jf405591g. Epub 2014 Mar 24.

Abstract

The mechanisms underlying the effect of epigallocatechin gallate (EGCG) on the micellar solubility of cholesterol were examined. EGCG eliminated both cholesterol and phosphatidylcholine (PC) from bile salt micelles in a dose-dependent manner in vitro. When the bile salt micelles contained a phospholipid other than PC, neither cholesterol nor the phospholipid was eliminated following the addition of EGCG. When vesicles comprised of various phospholipids were prepared and, EGCG was added to the vesicles, EGCG effectively and exclusively eliminated only PC. An intermolecular nuclear Overhauser effect (NOE) was observed between PC and EGCG in bile salt micelles with EGCG added, but not between cholesterol and EGCG, by using a NOE-correlated spectroscopy nuclear magnetic resonance method. The results of binding analyses using surface plasmon resonance (SPR) showed that EGCG did not bind to cholesterol. These observations strongly suggest that EGCG decreases the micellar solubility of cholesterol via specific interaction with PC.

MeSH terms

  • Bile Acids and Salts / metabolism
  • Camellia sinensis / chemistry*
  • Catechin / analogs & derivatives*
  • Catechin / chemistry
  • Catechin / metabolism
  • Cholesterol / chemistry*
  • Cholesterol / metabolism
  • Humans
  • Intestinal Absorption
  • Kinetics
  • Micelles
  • Models, Biological
  • Phosphatidylcholines / chemistry*
  • Phosphatidylcholines / metabolism
  • Plant Extracts / chemistry*
  • Plant Extracts / metabolism
  • Solubility

Substances

  • Bile Acids and Salts
  • Micelles
  • Phosphatidylcholines
  • Plant Extracts
  • Catechin
  • Cholesterol
  • epigallocatechin gallate