The evaluation of toxicity of carbon nanotubes on the human adipose-derived-stem cells in-vitro

Adv Biomed Res. 2014 Jan 24:3:40. doi: 10.4103/2277-9175.125729. eCollection 2014.

Abstract

Background: Carbon nanotubes (CNTs) have a large variety of applications in tissue engineering and biomedical devices. The biocompatibility and cytotoxicity of CNTs have been studied widely, however, up until now; there was uncertainty on how nanosized materials behave in the human body and stem cells. The current study describes the functionalized carbon nanotubes on adipose-derived stem cells (ADSCs) for viability and proliferation purposes in vitro.

Materials and methods: After chemical modification of the CNTs, the ADSCs were cultured in Dulbecco's Modified Eagle's. Medium (DMEM) having doses of 0.1, 1, 10, 20, 50, and 100 μg/ml of CNTs. On the third and seventh days of the experiment, the cellular viability, proliferation, and stemness were determined, using the MTT, trypan Blue, and flow cytometry assays in variable CNTs dosage.

Results: In doses of 0.1 and 1 μg/ml, the expression of the surface markers were similar to the control groups on day three, but decreased in higher dosages on day seven. The viability of both groups was the same on day three, but in comparison to the control groups, was found to decrease in the higher dosages on day seven.

Conclusion: The effect of CNTs on the viability and proliferation of ADSCs is a function of time and the doses used. Through further investigation by using these particles, we expect that we should be able to increase the viability and proliferation of ADSCs.

Keywords: Adipose-derived stem cells; carbon nanotubes; cell viability; proliferation.