Highly stable positively charged dendron-encapsulated gold nanoparticles

Langmuir. 2014 Apr 8;30(13):3883-93. doi: 10.1021/la5002013. Epub 2014 Mar 25.

Abstract

We report the development of a novel cationic dendron (TAG1-PCD) and a positively charged gold nanoparticle-dendron conjugate (PCD-AuNP). TAG1-PCD was designed by considering the reactivity, hydrophilicity, and cationic nature that is required to yield a stable gold conjugate in aqueous media. The PCD-AuNPs, nominally 10 nm in size, were synthesized by reduction of chloroauric acid in the presence of TAG1-PCD. The physicochemical properties of PCD-AuNPs were characterized by dynamic light scattering, transmission electron microscopy, UV-vis absorbance, and X-ray photoelectron spectroscopy for investigation of size distribution, shape uniformity, surface plasmon resonance bands, and Au-dendron bonding. Asymmetric-flow field flow fractionation was employed to confirm the in situ size, purity, and surface properties of the PCD-AuNPs. Additionally, the stability of PCD-AuNPs was systematically evaluated with respect to shelf life determination, stability in biological media and a wide range of pH values, chemical resistance against cyanide, redispersibility from lyophilized state, and stability at temperatures relevant to biological systems. Dose dependent cell viability was evaluated in vitro using the human lung epithelial cell line A549 and a monkey kidney Vero cell line. Observations from in vitro studies are discussed. Overall, the investigation confirmed the successful development of stable PCD-AuNPs with excellent stability in biologically relevant test media containing proteins and electrolytes, and with a shelf life exceeding 6 months. The excellent aqueous stability and apparent lack of toxicity for this conjugate enhances its potential use as a test material for investigating interactions between positively charged NPs and biocellular and biomolecular systems, or as a vehicle for drug delivery.

MeSH terms

  • Animals
  • Cell Line, Tumor
  • Cell Survival / drug effects
  • Chlorides / chemistry
  • Chlorocebus aethiops
  • Cyanides / chemistry
  • Dendrimers / chemistry*
  • Dendrimers / pharmacology
  • Drug Carriers
  • Fractionation, Field Flow
  • Gold / chemistry*
  • Gold Compounds / chemistry
  • Humans
  • Hydrophobic and Hydrophilic Interactions
  • Metal Nanoparticles / chemistry*
  • Metal Nanoparticles / toxicity
  • Metal Nanoparticles / ultrastructure
  • Particle Size
  • Static Electricity
  • Surface Properties
  • Temperature
  • Vero Cells

Substances

  • Chlorides
  • Cyanides
  • Dendrimers
  • Drug Carriers
  • Gold Compounds
  • Gold
  • gold tetrachloride, acid