Assessing chemical heterogeneity at the nanoscale in mixed-ligand metal-organic frameworks with the PTIR technique

Angew Chem Int Ed Engl. 2014 Mar 10;53(11):2852-6. doi: 10.1002/anie.201309295.

Abstract

Recently, the use of mixtures of organic-building-block linkers has given chemists an additional degree of freedom for engineering metal-organic frameworks (MOFs) with specific properties; however, the poor characterization of the chemical complexity of such MixMOF structures by conventional techniques hinders the verification of rational design. Herein, we describe the application of a technique known as photothermal induced resonance to individual MixMOF microcrystals to elucidate their chemical composition with nanoscale resolution. Results show that MixMOFs isoreticular to In-MIL-68, obtained either directly from solution or by postsynthetic linker exchange, are homogeneous down to approximately 100 nm. Additionally, we report a novel in situ process that enables the engineering of anisotropic domains in MOF crystals with submicron linker-concentration gradients.