Stable, high voltage Li0.85Ni0.46Cu0.1Mn1.49O4 spinel cathode in a lithium-ion battery using a conversion-type CuO anode

ACS Appl Mater Interfaces. 2014 Apr 9;6(7):5206-11. doi: 10.1021/am500499a. Epub 2014 Mar 21.

Abstract

We report in this work a copper-doped Li0.85Ni0.46Cu0.1Mn1.49O4 spinel-structured compound prepared by an easy, two-steps coprecipitation and solid state process and used in a lithium-ion battery in combination with a CuO-based anode. We show that the spinel-type cathode adopts unique morphology, characterized by well-developed, crystalline and aggregated microparticles, that considerably reduces the occurrence of side reactions. This cathode material can operate in a lithium cell at voltages as high as 5.3 V without sign of electrolyte decomposition, delivering a capacity of about 100 mA h g(-1) with high retention and high Coulombic efficiency over prolonged cycling. The combination of the Li0.85Ni0.46Cu0.1Mn1.49O4 cathode with a conversion-type, CuO-MCMB anode results in a new type of lithium ion battery characterized by a voltage value of 3.4 V, a stable capacity of 100 mA h g(-1) and a high Coulombic efficiency (exceeding 95%). Expected low cost, safety, and environmental compatibility are additional advantages of the lithium-ion cell reported here.

Publication types

  • Research Support, Non-U.S. Gov't