Removal of vapor-phase elemental mercury from stack emissions with sulfur-impregnated activated carbon

Rev Environ Contam Toxicol. 2014:230:1-34. doi: 10.1007/978-3-319-04411-8_1.

Abstract

This systematic review of high-quality, relevant original research articles existing in the literature was conducted to comprehensively explore the efficiency of Hg11 capture from stack emissions by sulfur-impregnated vs. virgin ACs. Our systematic overview suggested that significantly higher amounts of Hg0 are absorbed by sulfurimpregnated ACs than by virgin ones ( 1.5-32 times higher, based on the applied operational conditions). The main reason for this is because Hg11 capture by virgin ACs follows a physisorption mechanism, whereas that by sulfur-impregnated ACs occurs from a combination of physisorption of Hg11 on carbon texture and chemical reaction between Hg0 and impregnated sulfur, with subsequent formation of HgS. Temperature increased the Hg0 adsorption capacity of virgin ACs, especially when temperatures exceeded 100 oc. For sulfur-impregnated ACs, increasing the temperature up to I 00 oc increased the Hg0 adsorption capacity by enhancing the chemisorption of Hg0 capture. A further increase in temperature enhanced the efficiency of ACs that were impregnated with Sat higher temperatures (600 °C, for instance). This mainly resulted from production of stronger bonding of sulfur to carbon at higher impregnation temperatures and also from a more even distribution of sulfur in the carbon matrix. The authors of different papers reported different results with respect to whether there is an effect of initial Hg11 concentration on AC adsorption capacity. The authors of two studies could find no such etl'ect. The predominant evidence, however, favors the view that increased Hg0 adsorption capacities exist at higher inlet Hg0 concentrations. Such behavior is attributed to faster kinetics of Hg0 capture and an enhanced higher driving force at higher initial Hg0 inlet concentrations. Results from reviewed studies also indicated that the optimum SIC ratio and sulfur content are 2/1 and I 0-20%, respectively. Surface area has a less significant impact on Hg11 adsorption capacity than does sulfur content. However, at equivalent sulfur content, AC surface area also becomes an important factor, in that Hg0 adsorption capacity is accentuated at higher surface areas. We conclude from having prepared this review that sulfur-impregnated ACs have significantly greater efficiencies than virgin ACs for capturing Hg0 from stack emissions. Therefore, using them is more cost effective than using raw ACs; using them can also partly resolve the problem of high costs posed by applying carbon sorbents. In addition, the sulfur deposited in the ACs impregnated at higher temperatures is more evenly distributed in the carbon micropores and binds more strongly to the carbon matrix. Hence, sulfur-impregnated ACs can retain higher Hg0 adsorption capacities under actual stack conditions, if the temperature is at least 140 oc. Finally, since the major mechanism for Hg'l removal by sulfur-impregnated ACs is through the chemical reaction between Hg0 and S. and subsequent formation via strong bonds of HgS, the Hg'i adsorbed on ACs is quite stable and is not easily released when discharged as waste to the environment.

Publication types

  • Evaluation Study
  • Research Support, Non-U.S. Gov't
  • Review
  • Systematic Review

MeSH terms

  • Adsorption
  • Air Pollutants / analysis
  • Air Pollutants / chemistry*
  • Air Pollution / analysis
  • Air Pollution / prevention & control*
  • Charcoal / chemistry*
  • Environmental Restoration and Remediation / methods*
  • Mercury / analysis
  • Mercury / chemistry*
  • Sulfur / chemistry*

Substances

  • Air Pollutants
  • Charcoal
  • Sulfur
  • Mercury