Electronic and structural properties at the interface between iron-phthalocyanine and Cu(110)

J Chem Phys. 2014 Mar 7;140(9):094704. doi: 10.1063/1.4864656.

Abstract

Electronic structure and adsorption geometry of Iron-Phthalocyanine (FePc) adsorbed on Cu(110) were investigated by using ultraviolet photoelectron spectroscopy (UPS) and first-principles density functional theory (DFT) calculations. The emission features α, β, γ, and δ originating from the FePc molecules in UPS spectra are located at 3.42, 5.04, 7.36, and 10.28 eV below Fermi level. The feature α is mostly deriving from Fe 3d orbital with some contributions from C 2p orbital. A considerable charge transfer from the Cu substrate to the Fe 3d orbital occurs upon the adsorption of FePc molecules. The angle-resolved UPS measurements indicate that FePc molecules adopt lying-down configurations with their molecular plane nearly parallel to the Cu(110) substrate at monolayer stage. In combination with the DFT calculations, the adsorption structure is determined to be that FePc molecule adsorbs on the top site of Cu(110) with an angle of 45° between the lobes of FePc and the [110] azimuth of the substrate.