Neutrophil migration towards C5a and CXCL8 is prevented by non-steroidal anti-inflammatory drugs via inhibition of different pathways

Br J Pharmacol. 2014 Jul;171(14):3376-93. doi: 10.1111/bph.12670.

Abstract

Background and purpose: Non-steroidal anti-inflammatory drugs (NSAIDs) have been shown to induce PG-independent anti-inflammatory actions. Here, we investigated the role of three different NSAIDs (naproxen, ibuprofen and oxaprozin) on neutrophil responses to CXCL8 and C5a.

Experimental approach: Human neutrophils were isolated from healthy volunteers by dextran and Ficoll-Hypaque density gradients. Neutrophils were pre-incubated with different concentrations (1-100 µM) of NSAIDs or kinase inhibitors. Neutrophil degranulation into supernatants was tested by elisa and zymography. Neutrophil chemotaxis was determined using Boyden chambers. F-actin polymerization was determined by Alexa-Fluor 488-conjugated phalloidin fluorescent assay. Integrin expression was assessed by flow cytometry. The phosphorylation of intracellular kinases was studied by Western blot.

Key results: Pretreatment with NSAIDs did not affect neutrophil degranulation, but inhibited neutrophil migration and polymerization of F-actin, in response to CXCL8 and C5a. Pretreatment with different NSAIDs prevented C5a-induced integrin (CD11b) up-regulation, while only ibuprofen reduced CXCL8-induced CD11b up-regulation. Pre-incubation with naproxen or oxaprozin, but not ibuprofen, inhibited the PI3K/Akt-dependent chemotactic pathways. Both endogenous (released in cell supernatants) or exogenous (added to cell cultures) PGE2 did not affect C5a- or CXCL8-induced activities. Short-term incubation with NSAIDs did not affect neutrophil PGE2 release.

Conclusion and implications: Treatment with NSAIDs reduced C5a- and CXCL8-induced neutrophil migration and F-actin polymerization via different mechanisms. Inhibition by ibuprofen was associated with integrin down-regulation, while naproxen and oxaprozin blocked the PI3K/Akt pathway. Both NSAID actions were independent of COX inhibition and PGE2 release.

Keywords: C5a; CXCL8; NSAIDs; inflammation; neutrophils.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Adult
  • Anti-Inflammatory Agents, Non-Steroidal / pharmacology*
  • Chemotaxis, Leukocyte / drug effects*
  • Complement C5a / metabolism*
  • Dose-Response Relationship, Drug
  • Healthy Volunteers
  • Humans
  • Interleukin-8 / metabolism*
  • Middle Aged
  • Neutrophils / cytology*
  • Neutrophils / drug effects*
  • Neutrophils / metabolism
  • Phosphatidylinositol 3-Kinases / metabolism
  • Phosphoinositide-3 Kinase Inhibitors*
  • Proto-Oncogene Proteins c-akt / antagonists & inhibitors*
  • Proto-Oncogene Proteins c-akt / metabolism
  • Structure-Activity Relationship
  • Young Adult

Substances

  • Anti-Inflammatory Agents, Non-Steroidal
  • Interleukin-8
  • Phosphoinositide-3 Kinase Inhibitors
  • Complement C5a
  • Proto-Oncogene Proteins c-akt