Solution-processed mesoscopic Bi₂S₃:polymer photoactive layers

Chemphyschem. 2014 Apr 14;15(6):1019-23. doi: 10.1002/cphc.201301103. Epub 2014 Mar 5.

Abstract

The fabrication of solution-processed nontoxic mesoporous Bi2S3 structures is demonstrated and the suitability of these structures for use in hybrid solar cells investigated. Mesoporous Bi2S3 electrodes are prepared via thermal decomposition of a thin film composed of a bismuth xanthate single source precursor. The resultant Bi2S3 films are made up of regular needles with approximate dimensions of 50×500 nm, as confirmed by scanning electron microscopy (SEM). The crystallinity of the Bi2S3 is found to be dependent on the annealing temperature, as determined by X-ray diffraction. The porous Bi2S3 films are infiltrated with the hole conductor P3HT to generate novel hybrid films, and laser-based transient absorption spectroscopy is used to interrogate the charge-separation reaction at the resulting Bi2S3/P3HT heterojunction. Specifically, optical excitation of the hybrid films results in efficient and long-lived charge separation (microsecond to millisecond timescale), thereby rendering such films suitable for the development of novel low-cost solar-energy conversion devices.

Keywords: bismuth sulfide; hybrid photovoltaics; nontoxic materials; solution processing; transient absorption spectroscopy.